Glue this side down into your ISN using only 4 dots of glue

"A dot is a lot!"

Fold along line

CELL TONICITY

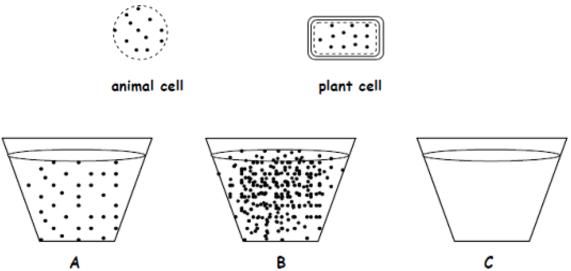
Using the key below and the information given, answer the questions.

key:
solute particle •
cell membrane
cell wall
in all solutions, the solvent is $\ensuremath{\text{\textbf{H}}}_2 0$

Part I.	Fill in	the	blank	(S:
---------	---------	-----	-------	-------------

A	is a fluid in which a substance is dissolved.
A	is a substance dissolved in a solvent.
A	is a combination of solute and solvent.
The process by which	ch H ₂ O diffuses across a membrane is callec

Part II	. Look at	the solutions	illustrated	below	and	fill in	the	blanks
---------	-----------	---------------	-------------	-------	-----	---------	-----	--------


1. Solution B is _	to solution A. This is because solution B has a greater
concentration of	in it than does solution $m{A}$. Solution $m{C}$ has no solutes dissolved in it, therefore i
s	_ to both Solutions A and B.

As the relative concentration of solutes in two solut	tions increases, of necessity the relative				
concentration of water in the same two solutions	Solution A has a lower concentration of				
than does Solution C; Solution A is also hypertonic to Solution C.					

Cut along dotted line

could add solute to Solution	If you took all three solutions, put t	could add water to Solution or you them into a large container and mixed
2	d the solution among the three cont Solution A would also be	to Solution C, and Solution C
would be to	Solution B.	
A	В	С
rt III. Below are represented a plant	t cell and an animal cell. Refer to the	key at the top left of page one and
in the blanks below. (If you find your	self counting solute dots, you're work	ing much too hard!) Assume that
e cell membranes are allow only water	er (<u>not</u> the solutes) to pass through	

Par fill the

- 1. Because the cytoplasms of the plant and the animal cell have equal concentrations of solutes, we can say that their cytoplasms are ______ to each other. If we put both the plant and the animal cells into Solution A, we would expect no change in the cells, because Solution A is ______ to the cytoplasm of each cell.
- 2. Let's put both cells into Solution B. Because Solution B is hypertonic to the cytoplasms of the cells, we would expect water to ______ the cells through the process of ______ . This would result in the cytoplasm of both cells shrinking.
- 3. Now we'll put both the plant and the animal cell into Solution C, which, because it contains no solutes at all, is ______ to the cytoplasm of both cells. _____ will enter both cells through osmosis. The animal cell is likely to ______, unfortunately. The plant cell, however, is protected from this because of the presence of its ______, which is lacking in the animal cell.